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Abstract The critical point in an infinite system is smeared out or
“rounded” in a finite system into a “critical region.” This region has
some structure associated with it, which is difficult to study except
by means of simulations, i.e., Monte Carlo. I have begun a study of
this structure in small two-dimensional Ising model systems, using the
Markov property method.

There is still an area of critical phenomena that has not been nearly as thor-
oughly explored as it might be. The regions where the temperature is greater
than the critical temperature and where the temperature is less than critical
temperature in infinite size systems have by now been quite thoroughly studied.
However, when the system is finite in size, we know that the thermodynamic
quantities which would have been divergent in an infinite system are rounded
over a critical region instead. There is some interesting structure in this region
described by finite-size scaling functions. Other problems which are of the same
character have recently come under investigation by Borgs et al., Caracciolo et
al., and Kim et al. [1]. Some methods of scaling are much less sensitive to the
system size than others. Put otherwise, we see better data collapse (indepen-
dence of the system size) using some sets of variables rather than other sets
which are asymptotically the same. The elucidation of which versions to use
is of considerable practical importance, as one can get by with much smaller
system sizes than would otherwise be required.

In this paper I will begin such a study, primarily for the two-dimensional
Ising model on small system sizes. The method of computation of these results
is the Markov property method [2]. T have results at various temperatures
for the 2, 4, 6, 8 and 10 edged squares on a plane square lattice with periodic
boundary conditions. In their study of the question of hyperscaling in the three
dimensional Ising model, Baker and Kawashima [3], and Baker and Erpenbeck,
and Kim [4] before them, noticed that the variable {7, /L where &;, is the corre-
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lation length computed from the system of size L is very useful in this regard.
That quantity is zero in the limit L — oo for temperatures above the critical
point and infinite for temperatures below the critical point. Thus the infinite
system limit where this quantity has any finite value is just the critical point,
and so looking at the behavior of the system for fixed 1, /L in effect spreads
out the critical point. We define the correlation length by,

€r” = [2f(Ak,0,0) +2£(0, Ak, 0) +2(0,0, Ak)
- f(OaAkaAk) o f(Ak,O,Ak) o f(AkaAka 0)]/37 (1)

where Ak = 2r/L, x = x(0) is the magnetic susceptibility, ( ) is the mean
value over all the states of the system, weighted by the Gibbs factor, and

- —]_
L km k kz k
f(k)54(Siﬂ27+sin27y+sin27> (1_X( )) ’

X
x(k) = < > , (2)

where S are the spin variables. In the region T' > T,, this definition of the
correlation length is correct up to the second order in 1/L. For T' < T, we
continue to use this definition. It is the analytic continuation (for finite L),
and is not to be confused with the proper low temperature quantities. The same
remark is true of the other thermodynamic quantities we use. If M is the
total magnetization, then the Binder cumulant ratio U, and the renormalized
coupling constant g are given by,
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where d is the spatial dimension.

Next I remark that the argument usually used in finite scaling discussions
instead of 1, /L is L'/¥ (K, — K), where K = J/kT with J the exchange energy
and k Boltzmann’s constant. (For the 2-D Ising model, v = 1.) There is a
considerable difference in these two variables for small values of L as is shown
in Fig. 1.

The point of the following graphs is that they are appropriate for quantities
which differ on the high and low sides of the the critical point. They will show
how the transition occurs. The critical point for an infinite system is a point
of non-uniform approach in the system-size, temperature plane. The functions
described in these graphs are basically finite-size scaling functions. It has been
argued by Privman and Fisher [5] that they should be universal, at least in the
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Fig. 1. L(K.—K)/K_ versus {1 /L for the 2D Ising model. The curves from left
to right are for L = 10,...2, and the diamonds mark the value at the critical

temperature.
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Fig. 2. g versus &1 /L for the 2-D Ising model. The curves are for L = 10,...2,
and the diamonds mark the value at the critical temperature, with L = 10 the

highest diamond.

high-temperature region. The most successful data collapse that I have found
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so far is for the renormalized coupling constant. These results are shown in
Fig. 2. The limiting value for £ /L — 0 is marked by a large tic mark on the
left hand margin. Note is taken that this limit is not the same as the value
at K = 0, but rather is the limit obtained by first holding &1, /L > 0 fixed
and taking L — oo followed by the limit {;,/L — 0. Note is taken that as
the Binder cumulant ratio differs from g by a factor of (£1,/L)¢, a similar data
collapse is also found for it as well.

Similar results were obtained by Baker and Kawashima [3] for the three
dimensional Ising model. We show them in Fig. 3.
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Fig. 3. (K/K.)%/?g(K) versus {1, /L for the 3-D Ising model. The curves are
for cubes with edge length L = 2, 4, 8, 16, 32, and 64, with periodic boundary
conditions.

A further example is shown in Fig. 4. Here we plot (K/Kc)7/sx/£z/4. The
factor of €7/ reflects the standard scaling behavior in the two dimensional
Ising model, and is chosen so the plotted quantity should be finite at the critical
point. The factor of (K/K,)"/® is included to compensate for the fact that
€ o K2 as K — 0. Thus the plotted quantity will also be finite at K = 0.
Again the limit {1, /L — 0 is marked with a large tic mark on the left margin.
The same remarks about this limit apply as those made with respect to Fig.3.
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Fig. 4. (K/KC)7/8g(K)/fz/4 versus &1, /L for the 2-D Ising model. The curves
from left to right are for squares with edge lengths L = 2, ... ;10. The diamonds

mark the values for the critical temperature, with L = 10 having the largest
value.
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